2(4x+3)(3x+5)=58x^2+58x+15

Simple and best practice solution for 2(4x+3)(3x+5)=58x^2+58x+15 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(4x+3)(3x+5)=58x^2+58x+15 equation:



2(4x+3)(3x+5)=58x^2+58x+15
We move all terms to the left:
2(4x+3)(3x+5)-(58x^2+58x+15)=0
We get rid of parentheses
-58x^2+2(4x+3)(3x+5)-58x-15=0
We multiply parentheses ..
-58x^2+2(+12x^2+20x+9x+15)-58x-15=0
We multiply parentheses
-58x^2+24x^2+40x+18x-58x+30-15=0
We add all the numbers together, and all the variables
-34x^2+15=0
a = -34; b = 0; c = +15;
Δ = b2-4ac
Δ = 02-4·(-34)·15
Δ = 2040
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2040}=\sqrt{4*510}=\sqrt{4}*\sqrt{510}=2\sqrt{510}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{510}}{2*-34}=\frac{0-2\sqrt{510}}{-68} =-\frac{2\sqrt{510}}{-68} =-\frac{\sqrt{510}}{-34} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{510}}{2*-34}=\frac{0+2\sqrt{510}}{-68} =\frac{2\sqrt{510}}{-68} =\frac{\sqrt{510}}{-34} $

See similar equations:

| 53=3v−25 | | 4e=6e-5=15 | | 2+10x+8=2(4x-1) | | 14+y=7 | | v/5-13=-11 | | 2(4x+3)(3x+5)=6x^2+58x+29 | | t/5-37=42 | | -25=2(w-8)-5w | | -8x=-88 | | p/12=-2 | | 97.1=b/8 | | 11-b/2=13 | | -2.63(q-18)=5.26 | | 3-8/2-x=2 | | -15x=12-7x=-3(5x+8) | | +2x+3+3+3=3(x+3) | | 6)-3(8-4x)=12 | | 24=9-(-3x) | | -7=q/3-11 | | 3.592.25+x)=14 | | -2x-(8)=4 | | 2(4x+3)(3x+5)=24x^2+58x+8 | | 70=-8d+14 | | 0=20–2x–5+8x | | 2(3+9z)=3(-10+10z) | | 32+0.5c=1 | | 4x=8-(12) | | 3x+80=50 | | -6.72+6.49+6.8w=3.21+7.2w | | 10(z+4)=70 | | 32+.5c=1 | | 9-2v-5=-4(-7v-1)+4v |

Equations solver categories